A radioterapia adaptativa na era da medicina personalizada: Onde estamos e para onde vamos?
DOI:
https://doi.org/10.32932/gecp.2023.12.046Keywords:
NSCLC, Adaptive Radiation Therapy, Precision, PULSAR, Radiomics, BiomarkersAbstract
Na era da Medicina Personalizada, também a Radioterapia (RT) tem vindo a sofrer uma mudança de paradigma. A Radioterapia standardizada, baseada em métodos de imagem 2D, com pouca informação anatómica e perspectiva de “one fits all”, tem vindo a ser substituída por esquemas individualizados, adaptativos e “custom made”, perspectivando um maior encontro entre as necessidades de cada um e uma visão mais holística da doença e do doente. Mas como o podemos fazer e executar na prática? Em que se aplica o conceito de personalização na Radioterapia, em geral, e no tratamento do Cancro do Pulmão em particular? Qual o seu impacto no nosso dia-a-dia? São estas e mais questões que tentaremos responder neste artigo de revisão.
Downloads
References
Yan D, Vicini F, Wong J, et al.: Adaptive radiation therapy. Phys Med Biol 42:123–132; 1997
Dieterich, S.; Ford, E.; et al; Chapter 14 - Treatment Planning and Quality Metrics; Practical Radiation Oncology Physics; 2016
Knap, M.M.; Hoffmann, L.; Nordsmark, M.; et al. Daily conebeam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients. Acta Oncol; 2010.
Kwint, M.; Conijn, S.; Schaake, E.; et al. Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother Oncol.; 2014.
Naruke, T.; Tsuchiya, R.; Kondo, H.; et al. Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg; 2001.
Koay EJ, Lege D, Mohan R, et al.: Adaptive/nonadaptive proton radiation planning and outcomes in a phase II trial for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 84:1093– 1100;2012.
Winkel D, Bol GH, Kiekebosch IH, et al.: Evaluation of online plan adaptation strategies for the 1.5T MR-linac based on “First-In-Man” treatments. Cureus; 2018.
Kadoya N: Current status of MR-Linac system. Igaku Butsuri 36:229–235, 2017 [PubMed: 28701666]
Yun J, Yip E, Gabos Z, et al.: Neural-network based autocontouring algorithm for intrafractional lung-tumor tracking using Linac-MR. Med Phys 42:2296–2310; 2015.
Murphy, M.; Balter, J.; et al; The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75; Medical Physics 34(10):4041-63; 2007.
Nesteruk, K.; Bobic, M.; et al; CT-on-Rails Versus In-Room CBCT for Online Daily Adaptive Proton Therapy of Head-and-Neck Cancers; Cancers; 2021.
Raaymakers, B.; Jürgenliemk-Schulz, I.; First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment; Physics in Medicine & Biology 62(23):L41-L50; 2017.
R.J. Gillies, A.R. Anderson, R.A. Gatenby, D.L. Morse, The biology underlying molecular imaging in oncology: from genome to anatome and back again, Clin. Radiol.; 2010.
Fornacon-Wooda, I.; Faivre-Finna, C:; O’Connor, J.; et al; Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype; Lung Cancer 146; 2020.
Balagurunathan Y, Schabath MB, Wang H, Liu Y, Gillies RJ. Quantitative Imaging Features Improve Discrimination of Malignancy in Pulmonary Nodules. Sci Rep; 2019.
TalwarA,RahmanNM,KadirT,PickupLC,Gleeson F. A Retrospective Validation Study of Three Models to Estimate the Probability of Malignancy in Patients With Small Pulmonary Nodules From a Tertiary Oncology Follow-Up Centre. Clin Radiol févr; 2017.
Godoy MCB, Odisio EGLC, Truong MT, de Groot PM, Shroff GS, Erasmus JJ. Pulmonary Nodule Management in Lung Cancer Screening: A Pictorial Review of Lung-RADS Version 1.0. Radiol Clin North Am; 2018.
Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, de Azevedo-Marques PM. Radiomics-Based Features for Pattern Recognition of Lung Cancer Histopathology and Metastases. Comput Methods Programs BioMed; 2018.
Radouane El Ayachy1,2,3* Nicolas Giraud3,4, The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up; Front. Oncol; 2021.
Bibault J-E, Fumagalli I, Ferté C, Chargari C, Soria J-C, Deutsch E. Personalized Radiation Therapy and Biomarker-Driven Treatment Strategies: A Systematic Review. Cancer Metastasis Rev; 2013.
Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated With Stereotactic Body Radiotherapy for Early-Stage non-Small Cell Lung Cancer: A Multicentric Study. J Nucl Med Off Publ Soc Nucl Med; 2020.
Zhang, Y.; Oikonomou, A.; et al; Radiomics-Based Prognosis Analysis for Non-Small Cell Lung Cancer; Sci Rep 7:46349; 2017.
Hawkins, SH.; Korechi, JN; et al; Predicting Outcomes of Nonsmall Cell Lung Cancer Using Ct Image Features. IEEE Access; 2014.
Ree, A.; Redalen, K; et al; Personalized radiotherapy: concepts, biomarkers and trial design; Br J Radiol; 2015.
Hosny, A.; Bitterman, D.; et al; Clinical validation of deep learning algorithms for radiotherapy targeting of non-small-cell lung cancer: an observational study; Lancet Digit Health; 2022.
Jackson P, Hardcastle N, Dawe N, et al.: Deep learning renal segmentation for fully automated radiation dose estimation in unsealed source therapy. Front Oncol 8:215, 2018.
Barten PGJ. Contrast sensitivity of the human eye and its effects on image quality. PhD thesis, Technische Universiteit Eindhoven, 1999.
Lou, B.; Doken, S.; Zhuang, T.; et al; An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction; Lancet Digital Health; 2019.
Yan D, Chen S, Krauss DJ, et al.: Tumor voxel dose response matrix and dose prescription function derived using (18)F-FDG PET/CT images for adaptive dose painting by number. Int J Radiat Oncol Biol Phys; 2019.
Kristy K. Brock et al; Adaptive Radiotherapy: Moving Into the Future; Semin Radiat Oncol; 2019.
Huynh, E.; Hosny, A.; Artificial intelligence in radiation oncology; Nature Reviews Clinical Oncology; 2020.
Hoppen, .L; Sarria, G.; et al: Dosimetric benefits of adaptive radiation therapy for patients with stage III non-small cell lung cancer; Radiation Oncology; 2023.
Kong FM, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys.; 2005.
Ramroth J, et al. Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys.; 2016.
Bradley JD, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol; 2015.
Hu, C.; Kong, F.; et al; NRG-RTOG 1106/ACRIN 6697: A phase IIR trial of standard versus adaptive (mid-treatment PET-based) chemoradiotherapy for stage III NSCLC—Results and comparison to NRG-RTOG 0617 (non-personalized RT dose escalation); Journal of Clinical Oncology; 2021.
Moore, C.; Hsu, C.; Chen, W.; wt al; Personalized Ultrafractionated Stereotactic Adaptive Radiotherapy (PULSAR) in Preclinical Models Enhances Single-Agent Immune Checkpoint Blockade; Int J Radiat Oncol Biol Phys; 2021.