Digital Image Analysis and Artificial Intelligence in Lung Cancer Pathology

Authors

DOI:

https://doi.org/10.32932/

Abstract

.

Downloads

Download data is not yet available.

References

Salvi M, Mogetta A, Raghavendra U, Gudigar A, Acharya UR, Molinari F. A dynamic uncertainty-aware ensemble model: Application to lung cancer segmentation in digital pathology. Appl Soft Comput.2024;165:112081.

Chen Z, Wong IHM, Dai W, Lo CTK, Wong TTW. Lung cancer diagnosis on virtual histologically stained tissue using weakly supervised learning. Mod Pathol. 2024;37:100487. doi: 10.1016/j.modpat.2024.100487.

Kanavati F, Toyokawa G, Momosaki S, Rambeau M, Kozuma Y, Shoji F, et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep. 2020;10:9297. doi: 10.1038/s41598-020-66333-x.

Le Page AL, Ballot E, Truntzer C, Derangère V, Ilie A, Rageot D, et al. Using a convolutional neural network for classification of squamous and non-squamous non-small cell lung cancer based on diagnostic histopathology HES images. Sci Rep. 2021;11:23912. doi: 10.1038/s41598-021-03206-x.

Yang JW, Song DH, An HJ, Seo SB. Classification of subtypes including LCNEC in lung cancer biopsy slides using convolutional neural network from scratch. Sci Rep. 2022;12:1830. doi: 10.1038/s41598-022-05709-7.

Feng Y, Ding H, Huang X, Zhang Y, Lu M, Zhang T, et al. Deep learning-based detection and semi-quantitative model for spread through air spaces (STAS) in lung adenocarcinoma. Npj Precis Oncol. 2024;8:173. doi: 10.1038/s41698-024-00664-0.

Ou DX, Lu CW, Chen LW, Lee WY, Hu HW, Chuang JH, et al. Deep Learning Analysis for Predicting Tumor Spread through Air Space in Early-Stage Lung Adenocarcinoma Pathology Images. Cancers. 2024;16:2132. doi: 10.3390/cancers16112132.

Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng. 2021;5:555–70. doi: 10.1038/s41551-020-00682-w.

Wang X, Janowczyk A, Zhou Y, Thawani R, Fu P, Schalper K, et al. Prediction of recurrence in early stage non-small cell lung cancer using computer extracted nuclear features from digital H&E images. Sci Rep. 2017;7:13543. doi: 10.1038/s41598-017-13773-7.

Gan J, Wang H, Yu H, He Z, Zhang W, Ma K, et al. Focalizing regions of biomarker relevance facilitates biomarker prediction on histopathological images. iScience. 2023;26:107243. doi:10.1016/j.isci.2023.107243.

Abel J, Jain S, Rajan D, Padigela H, Leidal K, Prakash A, et al. AI powered quantification of nuclear morphology in cancers enables prediction of genome instability and prognosis. Npj Precis Oncol. 2024;8::134. doi: 10.1038/s41698-024-00623-9.

Kim H, Kim S, Choi S, Park C, Park S, Pereira S, et al. Clinical Validation of Artificial Intelligence-Powered PD-L1 Tumor Proportion Score Interpretation for Immune Checkpoint Inhibitor Response Prediction in Non-Small Cell Lung Cancer. JCO Precis Oncol. 2024;8:e2300556. doi: 10.1200/PO.23.00556.

Choi S, Cho SI, Ma M, Park S, Pereira S, Aum BJ, et al. Artificial intelligence-powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of immunotherapy response. Eur J Cancer. 2022;170:17–26. doi:10.1016/j.ejca.2022.04.011.

Cortellini A, Zampacorta C, De Tursi M, Grillo LR, Ricciardi S, Bria E, et al. A preliminary study on the diagnostic performance of the uPath PD-L1 (SP263) artificial intelligence (AI) algorithm in patients with NSCLC treated with PD-1/PD-L1 checkpoint blockade. Pathologica. 2024;116:222–31. doi: 10.32074/1591-951X-998.

Corredor G, Wang X, Zhou Y, Lu C, Fu P, Syrigos K, et al. Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non-Small Cell Lung Cancer. Clin Cancer Res. 2019;25:1526–34. doi: 10.1158/1078-0432.CCR-18-2013.

Rakaee M, Kilvaer TK, Dalen SM, Richardsen E, Paulsen EE, Hald SM, et al. Evaluation of tumor-infiltrating lymphocytes using routine H&E slides predicts patient survival in resected non-small cell lung cancer. Hum Pathol. 2018;79:188–98. doi: 10.1016/j.humpath.2018.05.017.

Downloads

Published

2025-01-03

Issue

Section

Review Article