Comprehensive evaluation of peripheral immunodynamics in advanced non-small cell lung cancer associated to chemotherapy and immunotherapy

Authors

  • Paulo Rodrigues-Santos Faculdade de Medicina da Universidade de Coimbra
  • Luana Madalena Sousa Universidade de Coimbra, Centro de Neurociências e Biologia Celular (CNC), Laboratório de Imunologia e Oncologia.
  • Jani Sofia Almeida Universidade de Coimbra, Centro de Neurociências e Biologia Celular (CNC), Laboratório de Imunologia e Oncologia.
  • Fernando Barata Unidade Local de Saúde de Coimbra (ULSC), Serviço de Pneumologia, Coimbra
  • Ana Figueiredo Unidade Local de Saúde de Coimbra (ULSC), Serviço de Pneumologia, Coimbra

DOI:

https://doi.org/10.32932/

Keywords:

non-small-cell lung cancer, cancer immunotherapy, immune checkpoint blockade, immune monitoring, Biomarkers

Abstract

Immunotherapy, particularly immune checkpoint inhibitors (ICIs), has transformed the treatment landscape for advanced non-small cell lung cancer (NSCLC). Despite significant benefits for some patients, durable responses are limited to 20–30% of cases, necessitating predictive biomarkers for better therapeutic guidance. While tumor-based markers such as PD-L1 expression and tumor mutational burden offer partial insights, peripheral blood biomarkers have emerged as promising minimally invasive tools for monitoring immune dynamics and predicting outcomes.

This prospective pilot study analyzed the immune profiles of 51 NSCLC patients across three therapy groups—diagnostic (DX), chemotherapy (CT), and ICI-treated (ICB)—using high-dimensional flow cytometry and advanced computational algorithms. Compared to healthy controls, NSCLC patients exhibited significant alterations in immune subsets, including elevated regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Therapy-specific changes included increased effector and activated T cells (e.g., HLA-DR⁺CD38⁺ Th1 cells) and dendritic cell subtypes, particularly cDC2, in the ICB group. In contrast, chemotherapy was associated with heightened Tc2 and activated CD8 T cells.

Importantly, distinct immune signatures correlated with therapeutic outcomes. Non-progressors (stable disease or partial response) under ICB displayed higher levels of switch-memory B cells and cDC1, while progressors showed increased naïve B cells and cDC2. These findings highlight the immunomodulatory effects of different therapies and the potential of peripheral biomarkers for treatment stratification.

This study underscores the need for further validation of peripheral blood biomarkers and their integration into clinical decision-making to optimize NSCLC immunotherapy outcomes.

Downloads

Download data is not yet available.

References

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015 May 21;372(21):2018-28. doi: 10.1056/NEJMoa1501824. Epub 2015 Apr 19. PMID: 25891174.

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 Apr 3;348(6230):124-8. doi: 10.1126/science.aaa1348. Epub 2015 Mar 12. PMID: 25765070; PMCID: PMC4993154.

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011. PMID: 25428504; PMCID: PMC4836193.

Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD, Sasson A, Golhar R, Vitazka P, Chang H, Geese WJ, Antonia SJ. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell. 2018 May 14;33(5):853-861.e4. doi: 10.1016/j.ccell.2018.04.001. Epub 2018 May 3. Erratum in: Cancer Cell. 2019 Feb 11;35(2):329. doi: 10.1016/j.ccell.2019.01.011. PMID: 29731394; PMCID: PMC6750707.

Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, Ponce S, Ares LP, Leroy L, Audigier-Valette C, Felip E, Zerón-Medina J, Garrido P, Brosseau S, Zalcman G, Mazieres J, Caramela C, Lahmar J, Adam J, Chaput N, Soria JC, Besse B. Association of the Lung Immune Prognostic Index With Immune Checkpoint Inhibitor Outcomes in Patients With Advanced Non-Small Cell Lung Cancer. JAMA Oncol. 2018 Mar 1;4(3):351-357. doi: 10.1001/jamaoncol.2017.4771. PMID: 29327044; PMCID: PMC5885829.

Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, Kosteva JA, Ciunci CA, Gabriel PE, Thompson JC, Stonehouse-Lee S, Sherry VE, Gilbert E, Eaby-Sandy B, Mutale F, DiLullo G, Cohen RB, Vachani A, Langer CJ. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017 Apr;106:1-7. doi: 10.1016/j.lungcan.2017.01.013. Epub 2017 Jan 25. PMID: 28285682.

Soyano AE, Dholaria B, Marin-Acevedo JA, Diehl N, Hodge D, Luo Y, Manochakian R, Chumsri S, Adjei A, Knutson KL, Lou Y. Peripheral blood biomarkers correlate with outcomes in advanced non-small cell lung Cancer patients treated with anti-PD-1 antibodies. J Immunother Cancer. 2018 Nov 23;6(1):129. doi: 10.1186/s40425-018-0447-2. PMID: 30470260; PMCID: PMC6251165.

Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, Ascierto PA, Di Giacomo AM, Maio M, Schilling B, Sucker A, Schadendorf D, Hassel JC, Eigentler TK, Martus P, Wolchok JD, Blank C, Pawelec G, Garbe C, Weide B. Baseline Peripheral Blood Biomarkers Associated with Clinical Outcome of Advanced Melanoma Patients Treated with Ipilimumab. Clin Cancer Res. 2016 Jun 15;22(12):2908-18. doi: 10.1158/1078-0432.CCR-15-2412. Epub 2016 Jan 19. PMID: 26787752; PMCID: PMC5770142.

Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D'Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017 May 4;545(7652):60-65. doi: 10.1038/nature22079. Epub 2017 Apr 10. PMID: 28397821; PMCID: PMC5554367.

Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017 Mar 31;355(6332):1423-1427. doi: 10.1126/science.aaf0683. Epub 2017 Mar 9. PMID: 28280249; PMCID: PMC5595217.

Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, Gupta RK, Curtis C, Bucktrout SL, Davis MM, Chang ALS, Chang HY. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019 Aug;25(8):1251-1259. doi: 10.1038/s41591-019-0522-3. Epub 2019 Jul 29. PMID: 31359002; PMCID: PMC6689255.

Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada K, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014 May;124(5):2246-59. doi: 10.1172/JCI73639. Epub 2014 Mar 25. PMID: 24667641; PMCID: PMC4001555.

Möller M, Orth V, Umansky V, Hetjens S, Braun V, Reißfelder C, Hardt J, Seyfried S. Myeloid-derived suppressor cells in peripheral blood as predictive biomarkers in patients with solid tumors undergoing immune checkpoint therapy: systematic review and meta-analysis. Front Immunol. 2024 May 24;15:1403771. doi: 10.3389/fimmu.2024.1403771. PMID: 38855104; PMCID: PMC11157008.

Bronte G, Calabrò L, Olivieri F, Procopio AD, Crinò L. The prognostic effects of circulating myeloid-derived suppressor cells in non-small cell lung cancer: systematic review and meta-analysis. Clin Exp Med. 2023 Sep;23(5):1551-1561. doi: 10.1007/s10238-022-00946-6. Epub 2022 Nov 19. PMID: 36401744; PMCID: PMC10460713.

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252-64. doi: 10.1038/nrc3239. PMID: 22437870; PMCID: PMC4856023.

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015 Apr 9;161(2):205-14. doi: 10.1016/j.cell.2015.03.030. PMID: 25860605; PMCID: PMC5905674.

Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017 Feb;17(2):97-111. doi: 10.1038/nri.2016.107. Epub 2016 Oct 17. PMID: 27748397.

Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018 Oct 1;32(19-20):1267-1284. doi: 10.1101/gad.314617.118. PMID: 30275043; PMCID: PMC6169832.

Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016 Mar;37(3):208-220. doi: 10.1016/j.it.2016.01.004. Epub 2016 Feb 6. PMID: 26858199; PMCID: PMC4775398.

Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998 Mar 19;392(6673):245-52. doi: 10.1038/32588. PMID: 9521319.

Petitprez F, Meylan M, de Reyniès A, Sautès-Fridman C, Fridman WH. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Front Immunol. 2020 May 7;11:784. doi: 10.3389/fimmu.2020.00784. PMID: 32457745; PMCID: PMC7221158.

Wouters MCA, Nelson BH. Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clin Cancer Res. 2018 Dec 15;24(24):6125-6135. doi: 10.1158/1078-0432.CCR-18-1481. Epub 2018 Jul 26. PMID: 30049748.

Published

2025-01-02

Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Materials. Further inquiries can be directed to the corresponding author.

Issue

Section

Articles